Category Archives: Formats

Are micro Four Thirds Lenses Typically Twice as ‘Sharp’ as Full Frame’s?

In fact the question is more generic than that.   Smaller format lens designers try to compensate for their imaging system geometric resolution penalty  (compared to a larger format when viewing final images at the same size) by designing ‘sharper’ lenses specifically for it, rather than recycling larger formats’ designs (feeling guilty APS-C?) – sometimes with excellent effect.   Are they succeeding?   I will use mFT only as an example here, but input is welcome for all formats, from phones to large format.

Continue reading Are micro Four Thirds Lenses Typically Twice as ‘Sharp’ as Full Frame’s?

Can MTF50 be Trusted?

A reader suggested that a High-Res Olympus E-M5 Mark II image used in the previous post looked sharper than the equivalent Sony a6000 image, contradicting the relative MTF50 measurements, perhaps showing ‘the limitations of MTF50 as a methodology’.   That would be surprising because MTF50 normally correlates quite well with perceived sharpness, so I decided to check this particular case out.

‘Who are you going to believe, me or your lying eyes’?

Continue reading Can MTF50 be Trusted?

Olympus E-M5 II High-Res 64MP Shot Mode

Olympus just announced the E-M5 Mark II, an updated version of its popular micro Four Thirds E-M5 model, with an interesting new feature: its 16MegaPixel sensor, presumably similar to the one in other E-Mx bodies, has a high resolution mode where it gets shifted around by the image stabilization servos during exposure to capture, as they say in their press release

‘resolution that goes beyond full-frame DSLR cameras.  8 images are captured with 16-megapixel image information while moving the sensor by 0.5 pixel steps between each shot. The data from the 8 shots are then combined to produce a single, super-high resolution image, equivalent to the one captured with a 40-megapixel image sensor.’

A great idea that could give a welcome boost to the ‘sharpness’ of this handy system.  This preliminary test shows that the E-M5 mk II 64MP High-Res mode gives in this case a 10-12% advantage in MTF50 linear spatial resolution compared to the Standard Shot 16MP mode.  Plus it apparently virtually eliminates the possibility of  aliasing and moiré.  Great stuff, Olympus.

Continue reading Olympus E-M5 II High-Res 64MP Shot Mode

Equivalence in Pictures: Sharpness/Spatial Resolution

So, is it true that a Four Thirds lens needs to be about twice as ‘sharp’ as its Full Frame counterpart in order to be able to display an image of spatial resolution equivalent to the larger format’s?

It is, because of the simple geometry I will describe in this article.  In fact with a few provisos one can generalize and say that lenses from any smaller format need to be ‘sharper’ by the ratio of their sensor linear sizes in order to produce the same linear resolution on same-sized final images.

This is one of the reasons why Ansel Adams shot 4×5 and 8×10 – and I would too, were it not for logistical and pecuniary concerns.

Continue reading Equivalence in Pictures: Sharpness/Spatial Resolution

Equivalence in Pictures: Focal Length, f-number, diffraction

Equivalence – as we’ve discussed one of the fairest ways to compare the performance of two cameras of different physical formats, characteristics and specifications – essentially boils down to two simple realizations for digital photographers:

  1. metrics need to be expressed in units of picture height (or diagonal where the aspect ratio is significantly different) in order to easily compare performance with images displayed at the same size; and
  2. focal length changes proportionally to sensor size in order to capture identical scene content on a given sensor, all other things being equal.

The first realization should be intuitive (future post).  The second one is the subject of this post: I will deal with it through a couple of geometrical diagrams.

Continue reading Equivalence in Pictures: Focal Length, f-number, diffraction

Comparing Sensor SNR

We’ve seen how SNR curves can help us analyze digital camera IQ:

SNR-Photon-Transfer-Model-D610-4

In this post we will use them to help us compare digital cameras, independently of format size. Continue reading Comparing Sensor SNR

Focus Tolerance and Format Size

The key variable as far as the tolerances required to position the lens for accurate focus are concerned (at least in a simplified ideal situation) is an appropriate approximate distance between the desired in-focus plane and the actual in-focus plane (which we are assuming is slightly out of focus). It is a distance in the direction perpendicular to the x-y plane normally used to describe position of the image on it, hence the designation delta z, or dz in this post.  The lens’ allowable focus tolerance is therefore  +/- dz, which we will show in this post to vary as the square of the format’s diagonal. Continue reading Focus Tolerance and Format Size