Tag Archives: APS-C

How does a Raw Image Get Rendered?

What are the basic low level steps involved in raw file conversion?  In this article I will discuss what happens under the hood of digital camera raw converters in order to turn raw file data into a viewable image, a process sometimes referred to as ‘rendering’.  We will use the following raw capture to show how image information is transformed at every step along the way:

Nikon D610 with AF-S 24-120mm f/4 lens at 24mm f/8 ISO100, minimally rendered from raw as outlined in the article.
Figure 1. Nikon D610 with AF-S 24-120mm f/4 lens at 24mm f/8 ISO100, minimally rendered from raw by Octave/Matlab following the steps outlined in the article.

Rendering = Raw Conversion + Editing

Continue reading How does a Raw Image Get Rendered?

Taking the Sharpness Model for a Spin

The series of articles starting here outlines a model of how the various physical components of a digital camera and lens can affect the ‘sharpness’ – that is the spatial resolution – of the  images captured in the raw data.  In this one we will pit the model against MTF curves obtained through the slanted edge method[1] from real world raw captures both with and without an anti-aliasing filter.

With a few simplifying assumptions, which include ignoring aliasing and phase, the spatial frequency response (SFR or MTF) of a photographic digital imaging system near the center can be expressed as the product of the Modulation Transfer Function of each component in it.  For a current digital camera these would typically be the main ones:

(1)   \begin{equation*} MTF_{sys} = MTF_{lens} (\cdot MTF_{AA}) \cdot MTF_{pixel} \end{equation*}

all in two dimensions Continue reading Taking the Sharpness Model for a Spin

Engineering Dynamic Range in Photography

Dynamic Range (DR) in Photography usually refers to the working tone range, from darkest to brightest, that the imaging system is capable of capturing and/or displaying.  It is expressed as a ratio, in stops:

    \[ DR = log_2(\frac{Maximum Acceptable Signal}{Minimum Acceptable Signal}) \]

It is a key Image Quality metric because photography is all about contrast, and dynamic range limits the range of recordable/displayable tones.  Different components in the imaging system have different working dynamic ranges and the system DR is equal to the dynamic range of the weakest performer in the chain.

Continue reading Engineering Dynamic Range in Photography

Equivalence in Pictures: Focal Length, f-number, diffraction

Equivalence – as we’ve discussed one of the fairest ways to compare the performance of two cameras of different physical formats, characteristics and specifications – essentially boils down to two simple realizations for digital photographers:

  1. metrics need to be expressed in units of picture height (or diagonal where the aspect ratio is significantly different) in order to easily compare performance with images displayed at the same size; and
  2. focal length changes proportionally to sensor size in order to capture identical scene content on a given sensor, all other things being equal.

The first realization should be intuitive (future post).  The second one is the subject of this post: I will deal with it through a couple of geometrical diagrams.

Continue reading Equivalence in Pictures: Focal Length, f-number, diffraction

MTF50 and Perceived Sharpness

Is MTF50 a good proxy for perceived sharpness?  It turns out that the spatial frequencies that are most closely related to our perception of sharpness vary with the size and viewing distance of the displayed image.

For instance if an image captured by a Full Frame camera is viewed at ‘standard’ distance (that is a distance equal to its diagonal) the portion of the MTF curve most representative of perceived sharpness appears to be around MTF90. Continue reading MTF50 and Perceived Sharpness