Tag Archives: convolution

The Richardson-Lucy Algorithm

Deconvolution by the Richardson-Lucy algorithm is achieved by minimizing the convex loss function derived in the last article

(1)   \begin{equation*} J(O) = \sum \bigg (O**PSF - I\cdot ln(O**PSF) \bigg) \end{equation*}

with

  • J, the scalar quantity to minimize, function of ideal image O(x,y)
  • I(x,y), linear captured image intensity laid out in M rows and N columns, corrupted by Poisson noise and blurring by the PSF
  • PSF(x,y), the known two-dimensional Point Spread Function that should be deconvolved out of I
  • O(x,y), the output image resulting from deconvolution, ideally without shot noise and blurring introduced by the PSF
  • **   two-dimensional convolution
  • \cdot   element-wise product
  • ln, element-wise natural logarithm

In what follows indices x and y, from zero to M-1 and N-1 respectively, are dropped for readability.  Articles about algorithms are by definition dry so continue at your own peril.

So, given captured raw image I blurred by known function PSF, how do we find the minimum value of J yielding the deconvolved image O that we are after?

Continue reading The Richardson-Lucy Algorithm

Elements of Richardson-Lucy Deconvolution

We have seen that deconvolution by naive division in the frequency domain only works in ideal conditions not typically found in normal photographic settings, in part because of shot noise inherent in light from the scene. Half a century ago William Richardson (1972)[1] and Leon Lucy (1974)[2] independently came up with a better way to deconvolve blurring introduced by an imaging system in the presence of shot noise. Continue reading Elements of Richardson-Lucy Deconvolution

A Simple Model for Sharpness in Digital Cameras – I

The next few posts will describe a linear spatial resolution model that can help a photographer better understand the main variables involved in evaluating the ‘sharpness’ of photographic equipment and related captures.   I will show numerically that the combined spectral frequency response (MTF) of a perfect AAless monochrome digital camera and lens in two dimensions can be described as the magnitude of the normalized product of the Fourier Transform (FT) of the lens Point Spread Function by the FT of the pixel footprint (aperture), convolved with the FT of a rectangular grid of Dirac delta functions centered at each  pixel:

    \[ MTF_{2D} = \left|\widehat{ PSF_{lens} }\cdot \widehat{PIX_{ap} }\right|_{pu}\ast\ast\: \delta\widehat{\delta_{pitch}} \]

With a few simplifying assumptions we will see that the effect of the lens and sensor on the spatial resolution of the continuous image on the sensing plane can be broken down into these simple components.  The overall ‘sharpness’ of the captured digital image can then be estimated by combining the ‘sharpness’ of each of them.

The stage will be set in this first installment with a little background and perfect components.  Later additional detail will be provided to take into account pixel aperture and Anti-Aliasing filters.  Then we will look at simple aberrations.  Next we will learn how to measure MTF curves for our equipment, and look at numerical methods to model PSFs and MTFs from the wavefront at the aperture. Continue reading A Simple Model for Sharpness in Digital Cameras – I