Tag Archives: equivalence

Are micro Four Thirds Lenses Typically Twice as ‘Sharp’ as Full Frame’s?

In fact the question is more generic than that.   Smaller format lens designers try to compensate for their imaging system geometric resolution penalty  (compared to a larger format when viewing final images at the same size) by designing ‘sharper’ lenses specifically for it, rather than recycling larger formats’ designs (feeling guilty APS-C?) – sometimes with excellent effect.   Are they succeeding?   I will use mFT only as an example here, but input is welcome for all formats, from phones to large format.

Continue reading Are micro Four Thirds Lenses Typically Twice as ‘Sharp’ as Full Frame’s?

Equivalence in Pictures: Sharpness/Spatial Resolution

So, is it true that a Four Thirds lens needs to be about twice as ‘sharp’ as its Full Frame counterpart in order to be able to display an image of spatial resolution equivalent to the larger format’s?

It is, because of the simple geometry I will describe in this article.  In fact with a few provisos one can generalize and say that lenses from any smaller format need to be ‘sharper’ by the ratio of their sensor linear sizes in order to produce the same linear resolution on same-sized final images.

This is one of the reasons why Ansel Adams shot 4×5 and 8×10 – and I would too, were it not for logistical and pecuniary concerns.

Continue reading Equivalence in Pictures: Sharpness/Spatial Resolution

Equivalence in Pictures: Focal Length, f-number, diffraction

Equivalence – as we’ve discussed one of the fairest ways to compare the performance of two cameras of different physical formats, characteristics and specifications – essentially boils down to two simple realizations for digital photographers:

  1. metrics need to be expressed in units of picture height (or diagonal where the aspect ratio is significantly different) in order to easily compare performance with images displayed at the same size; and
  2. focal length changes proportionally to sensor size in order to capture identical scene content on a given sensor, all other things being equal.

The first realization should be intuitive (future post).  The second one is the subject of this post: I will deal with it through a couple of geometrical diagrams.

Continue reading Equivalence in Pictures: Focal Length, f-number, diffraction

Comparing Sensor SNR

We’ve seen how SNR curves can help us analyze digital camera IQ:

SNR-Photon-Transfer-Model-D610-4

In this post we will use them to help us compare digital cameras, independently of format size. Continue reading Comparing Sensor SNR

Equivalence and Equivalent Image Quality: Signal

One of the fairest ways to compare the performance of two cameras of different physical characteristics and specifications is to ask a simple question: which photograph would look better if the cameras were set up side by side, captured identical scene content and their output were then displayed and viewed at the same size?

Achieving this set up and answering the question is anything but intuitive because many of the variables involved, like depth of field and sensor size, are not those we are used to dealing with when taking photographs.  In this post I would like to attack this problem by first estimating the output signal of different cameras when set up to capture Equivalent images.

It’s a bit long so I will give you the punch line first:  digital cameras of the same generation set up equivalently will typically generate more or less the same signal in e^- independently of format.  Ignoring noise, lenses and aspect ratio for a moment and assuming the same camera gain and number of pixels, they will produce identical raw files. Continue reading Equivalence and Equivalent Image Quality: Signal

Focus Tolerance and Format Size

The key variable as far as the tolerances required to position the lens for accurate focus are concerned (at least in a simplified ideal situation) is an appropriate approximate distance between the desired in-focus plane and the actual in-focus plane (which we are assuming is slightly out of focus). It is a distance in the direction perpendicular to the x-y plane normally used to describe position of the image on it, hence the designation delta z, or dz in this post.  The lens’ allowable focus tolerance is therefore  +/- dz, which we will show in this post to vary as the square of the format’s diagonal. Continue reading Focus Tolerance and Format Size