Tag Archives: information theory

Image Quality: Raising ISO vs Pushing in Conversion

In the last few posts I have made the case that Image Quality in a digital camera is entirely dependent on the light Information collected at a sensor’s photosites during Exposure.  Any subsequent processing – whether analog amplification and conversion to digital in-camera and/or further processing in-computer – effectively applies a set of Information Transfer Functions to the signal  that when multiplied together result in the data from which the final photograph is produced.  Each step of the way can at best maintain the original Information Quality (IQ) but in most cases it will degrade it somewhat.

IQ: Only as Good as at Photosites’ Output

This point is key: in a well designed imaging system** the final image IQ is only as good as the scene information collected at the sensor’s photosites, independently of how this information is stored in the working data along the processing chain, on its way to being transformed into a pleasing photograph.  As long as scene information is properly encoded by the system early on, before being written to the raw file – and information transfer is maintained in the data throughout the imaging and processing chain – final photograph IQ will be virtually the same independently of how its data’s histogram looks along the way.

Continue reading Image Quality: Raising ISO vs Pushing in Conversion

The Difference Between Data and Information

In photography, digital cameras capture information about the scene carried by photons reflected by it and store the information as data in a raw file pretty well linearly.  Data is the container, scene information is the substance.  There may or may not be information in the data, no matter what its form.  With a few limitations what counts is the substance, information, not the form, data.

A Simple Example

Imagine for instance that you are taking stock of the number of remaining pieces in your dinner place settings.  You originally had a full set of 6 of everything but today, after many years of losses and breakage, this is the situation in each category: Continue reading The Difference Between Data and Information

Information Transfer – The ISO Invariant Case

We know that the best Information Quality possible collected from the scene by a digital camera is available right at the output of the sensor and it will only be degraded from there.  This article will discuss what happens to this information as it is transferred through the imaging system and stored in the raw data.  It will use the simple language outlined in the last post to explain how and why the strategy for Capturing the best Information or Image Quality (IQ) possible from the scene in the raw data involves only two simple steps:

1) Maximizing the collected Signal given artistic and technical constraints; and
2) Choosing what part of the Signal to store in the raw data and what part to leave behind.

The second step is only necessary  if your camera is incapable of storing the entire Signal at once (that is it is not ISO invariant) and will be discussed in a future article.  In this post we will assume an ISOless imaging system.

Continue reading Information Transfer – The ISO Invariant Case

Information Theory for Photographers

Ever since Einstein we’ve been able to say that humans ‘see’ because information about the scene is carried to the eyes by photons reflected by it.  So when we talk about Information in photography we are referring to information about the energy and distribution of photons arriving from the scene.   The more complete this information, the better we ‘see’.  No photons = no information = no see; few photons = little information = see poorly = poor IQ; more photons = more information = see better = better IQ.

Sensors in digital cameras work similarly, their output ideally being the energy and location of every photon incident on them during Exposure. That’s the full information ideally required to recreate an exact image of the original scene for the human visual system, no more and no less. In practice however we lose some of this information along the way during sensing, so we need to settle for approximate location and energy – in the form of photoelectron counts by pixels of finite area, often correlated to a color filter array.

Continue reading Information Theory for Photographers

How Many Bits to Fully Encode My Image

My camera sports a 14 stop Engineering Dynamic Range.  What bit depth do I need to safely fully encode all of the captured tones from the scene with a linear sensor?  As we will see the answer is not 14 bits because that’s the eDR, but it’s not too far from that either – for other reasons, as information science will show us in this article.

When photographers talk about grayscale ‘tones’ they typically refer to the number of distinct gray levels present in a displayed image.  They don’t want to see distinct levels in a natural slow changing gradient like a dark sky: if it’s smooth they want to perceive it as smooth when looking at their photograph.  So they want to make sure that all possible tonal  information from the scene has been captured and stored in the raw data by their imaging system.

Continue reading How Many Bits to Fully Encode My Image

Dynamic Range and Bit Depth

My camera has an engineering Dynamic Range of 14 stops, how many bits do I need to encode that DR?  Well, to encode the whole Dynamic Range 1 bit could suffice, depending on the content and the application.  The reason is simple, dynamic range is only concerned with the extremes, not with tones in between:

    \[ DR = \frac{Maximum Signal}{Minimum Signal} \]

So in theory we only need 1 bit to encode it: zero for minimum signal and one for maximum signal, like so

Continue reading Dynamic Range and Bit Depth