While checking some out-of-gamut tones on an xy Chromaticity Diagram I started to wonder how far two tones needed to be in order for an observer to notice a difference. Were the tones in the yellow and red clusters below discernible or would they be indistinguishable, all being perceived as the same ‘color’?

# Tag Archives: octave

# Wavefront to PSF to MTF: Physical Units

In the last article we saw that the Point Spread Function and the Modulation Transfer Function of a lens could be easily obtained numerically by applying Discrete Fourier Transforms to its generalized exit pupil function twice in sequence.^{[1]}

Obtaining the 2D DFTs is easy: simply feed MxN numbers representing the two dimensional complex image of the pupil function in its space to a fast fourier transform routine and, presto, it produces MxN numbers that represent the amplitude of the PSF on the sensing plane, as shown below for the pupil function of a perfect lens with a circular aperture and MxN = 1024×1024.

Simple *and* fast. Wonderful. Below is a slice through the center, the 513th row, zoomed in. Hmm…. What are the physical units on the axes of displayed data produced by the DFT?

Less easy – and the subject of this article as seen from a photographic perspective.

# Aberrated Wave to Image Intensity to MTF

Goodman, in his excellent Introduction to Fourier Optics^{[1]}, describes how an image is formed on a camera sensing plane starting from first principles, that is electromagnetic propagation according to Maxwell’s wave equation. If you want the play by play account I highly recommend his math intensive book. But for the budding photographer it is sufficient to know what happens at the exit pupil of the lens because after that the transformations to Point Spread and Modulation Transfer Functions are straightforward, as we will show in this article.

The following diagram exemplifies the last few millimeters of the journey that light from the scene has to travel in order to smash itself against our camera’s sensing medium. Light from the scene in the form of field arrives at the front of the lens. It goes through the lens being partly blocked and distorted by it (we’ll call this blocking/distorting function ) and finally arrives at its back end, the exit pupil. The complex light field at the exit pupil’s two dimensional plane is now as shown below:

# Linear Color: Applying the Forward Matrix

Now that we know how to create a 3×3 linear matrix to convert white balanced and demosaiced raw data into connection space – and where to obtain the 3×3 linear matrix to then convert it to a standard output color space like sRGB – we can take a closer look at the matrices and apply them to a real world capture chosen for its wide range of chromaticities.

#### Continue reading Linear Color: Applying the Forward Matrix

# Color: Determining a Forward Matrix for Your Camera

We understand from the previous article that rendering color during raw conversion essentially means mapping raw data in the form of triplets into a standard color space via a Profile Connection Space in a two step process

The first step white balances and demosaics the raw data, which at that stage we will refer to as , followed by converting it to Profile Connection Space through linear projection by an unknown ‘Forward Matrix’ (as DNG calls it) of the form

(1)

Determining the nine coefficients of this matrix is the main subject of this article^{[1]}. Continue reading Color: Determining a Forward Matrix for Your Camera

# How does a Raw Image Get Rendered?

What are the basic low level steps involved in raw file conversion? In this article I will discuss what happens under the hood of digital camera raw converters in order to turn raw file data into a viewable image, a process sometimes referred to as ‘rendering’. We will use the following raw capture to show how image information is transformed at every step along the way:

#### Rendering = Raw Conversion + Editing

# Photographic Sensor Simulation

Physicists and mathematicians over the last few centuries have spent a lot of their time studying light and electrons, the key ingredients of digital photography. In so doing they have left us with a wealth of theories to explain their behavior in nature and in our equipment. In this article I will describe how to simulate the information generated by a uniformly illuminated imaging system using open source Octave (or equivalently Matlab) utilizing some of these theories. Since as you will see the simulations are incredibly (to me) accurate, understanding how the simulator works goes a long way in explaining the inner workings of a digital sensor at its lowest levels; and simulated data can be used to further our understanding of photographic science without having to run down the shutter count of our favorite SLRs. This approach is usually referred to as Monte Carlo simulation.