Tag Archives: OLPAF

Canon’s High-Res Optical Low Pass Filter

Canon recently introduced its EOS-1D X Mark III Digital Single-Lens Reflex [Edit: and now also possibly the R5 Mirrorless ILC] touting a new and improved Anti-Aliasing filter, which they call a High-Res Gaussian Distribution LPF, claiming that

“This not only helps to suppress moiré and color distortion,
but also improves resolution.”

Figure 1. Artist’s rendition of new High-res Low Pass Filter, courtesy of Canon USA

In this article we will try to dissect the marketing speak and understand a bit better the theoretical implications of the new AA.  For the abridged version, jump to the Conclusions at the bottom.  In a picture:

Canon High-Res Anti-Aliasing filter
Figure 16: The less psychedelic, the better.

Continue reading Canon’s High-Res Optical Low Pass Filter

A Simple Model for Sharpness in Digital Cameras – AA

This article will discuss a simple frequency domain model for an AntiAliasing (or Optical Low Pass) Filter, a hardware component sometimes found in a digital imaging system[1].  The filter typically sits just above the sensor and its objective is to block as much of the aliasing and moiré creating energy above the monochrome Nyquist spatial frequency while letting through as much as possible of the real image forming energy below that, hence the low-pass designation.

Downsizing Box 4X
Figure 1. The blue line indicates the pass through performance of an ideal anti-aliasing filter presented with an Airy PSF (Original): pass all spatial frequencies below Nyquist (0.5 c/p) and none above that. No filter has such ideal characteristics and if it did its hard edges would result in undesirable ringing in the image.

In consumer digital cameras it is often implemented  by introducing one or two birefringent plates in the sensor’s filter stack.  This is how Nikon shows it for one of its DSLRs:

d800-aa1
Figure 2. Typical Optical Low Pass Filter implementation  in a current Digital Camera, courtesy of Nikon USA (yellow displacement ‘d’ added).

Continue reading A Simple Model for Sharpness in Digital Cameras – AA