Tag Archives: USM

Image Quality: Raising ISO vs Pushing in Conversion

In the last few posts I have made the case that Image Quality in a digital camera is entirely dependent on the light Information collected at a sensor’s photosites during Exposure.  Any subsequent processing – whether analog amplification and conversion to digital in-camera and/or further processing in-computer – effectively applies a set of Information Transfer Functions to the signal  that when multiplied together result in the data from which the final photograph is produced.  Each step of the way can at best maintain the original Information Quality (IQ) but in most cases it will degrade it somewhat.

IQ: Only as Good as at Photosites’ Output

This point is key: in a well designed imaging system** the final image IQ is only as good as the scene information collected at the sensor’s photosites, independently of how this information is stored in the working data along the processing chain, on its way to being transformed into a pleasing photograph.  As long as scene information is properly encoded by the system early on, before being written to the raw file – and information transfer is maintained in the data throughout the imaging and processing chain – final photograph IQ will be virtually the same independently of how its data’s histogram looks along the way.

Continue reading Image Quality: Raising ISO vs Pushing in Conversion

What Radius to Use for Deconvolution Capture Sharpening

The following approach will work if you know the spatial frequency at which a certain MTF relative energy level (e.g. MTF50) is achieved by your camera/lens combination as set up at the time that the capture was taken.

The process by which our hardware captures images and stores them  in the raw data inevitably blurs detail information from the scene. Continue reading What Radius to Use for Deconvolution Capture Sharpening

Deconvolution vs USM Capture Sharpening

UnSharp Masking (USM) capture sharpening is somewhat equivalent to taking a black/white marker and drawing along every transition in the picture to make it stand out more – automatically.  Line thickness and darkness is chosen arbitrarily to achieve the desired effect, much like painters do. Continue reading Deconvolution vs USM Capture Sharpening