Tag Archives: radial slice

Taking the Sharpness Model for a Spin

The series of articles starting here outlines a model of how the various physical components of a digital camera and lens can affect the ‘sharpness’ – that is the spatial resolution – of the  images captured in the raw data.  In this one we will pit the model against MTF curves obtained through the slanted edge method[1] from real world raw captures both with and without an anti-aliasing filter.

With a few simplifying assumptions, which include ignoring aliasing and phase, the spatial frequency response (SFR or MTF) of a photographic digital imaging system near the center can be expressed as the product of the Modulation Transfer Function of each component in it.  For a current digital camera these would typically be the main ones:

(1)   \begin{equation*} MTF_{sys} = MTF_{lens} (\cdot MTF_{AA}) \cdot MTF_{pixel} \end{equation*}

all in two dimensions Continue reading Taking the Sharpness Model for a Spin

A Simple Model for Sharpness in Digital Cameras – Defocus

This series of articles has dealt with modeling an ideal imaging system’s ‘sharpness’ in the frequency domain.  We looked at the effects of the hardware on spatial resolution: diffraction, sampling interval, sampling aperture (e.g. a squarish pixel), anti-aliasing OLPAF filters.  The next two posts will deal with modeling typical simple imperfections related to the lens: defocus and spherical aberrations.

Defocus = OOF

Defocus means that the sensing plane is not exactly where it needs to be for image formation in our ideal imaging system: the image is therefore out of focus (OOF).  Said another way, light from a point source would go through the lens but converge either behind or in front of the sensing plane, as shown in the following diagram, for a lens with a circular aperture:

Figure 1. Back Focus, In Focus, Front Focus.
Figure 1. Top to bottom: Back Focus, In Focus, Front Focus.  To the right is how the relative PSF would look like on the sensing plane.  Image under license courtesy of Brion.

Continue reading A Simple Model for Sharpness in Digital Cameras – Defocus