Tag Archives: lw/ph

The Nikon Z7’s Insane Sharpness

Ever since getting a Nikon Z7 MILC a few months ago I have been literally blown away by the level of sharpness it produces.   I thought that my surprise might be the result of moving up from 24 to 45.7MP, or the excellent pin-point focusing mode, or the lack of an Antialiasing filter.  Well, it turns out that there is probably more at work than that.

This weekend I pulled out the largest cutter blade I could find and set it up rough and tumble near vertically about 10 meters away  to take a peek at what the MTF curves that produce such sharp results might look like.

Continue reading The Nikon Z7’s Insane Sharpness

Taking the Sharpness Model for a Spin

The series of articles starting here outlines a model of how the various physical components of a digital camera and lens can affect the ‘sharpness’ – that is the spatial resolution – of the  images captured in the raw data.  In this one we will pit the model against MTF curves obtained through the slanted edge method[1] from real world raw captures both with and without an anti-aliasing filter.

With a few simplifying assumptions, which include ignoring aliasing and phase, the spatial frequency response (SFR or MTF) of a photographic digital imaging system near the center can be expressed as the product of the Modulation Transfer Function of each component in it.  For a current digital camera these would typically be the main ones:

(1)   \begin{equation*} MTF_{sys} = MTF_{lens} (\cdot MTF_{AA}) \cdot MTF_{pixel} \end{equation*}

all in two dimensions Continue reading Taking the Sharpness Model for a Spin

Equivalence in Pictures: Sharpness/Spatial Resolution

So, is it true that a Four Thirds lens needs to be about twice as ‘sharp’ as its Full Frame counterpart in order to be able to display an image of spatial resolution equivalent to the larger format’s?

It is, because of the simple geometry I will describe in this article.  In fact with a few provisos one can generalize and say that lenses from any smaller format need to be ‘sharper’ by the ratio of their sensor diagonals in order to produce the same linear resolution on same-sized final images.

This is one of the reasons why Ansel Adams shot 4×5 and 8×10 – and I would too, were it not for logistical and pecuniary concerns.

Continue reading Equivalence in Pictures: Sharpness/Spatial Resolution

The Units of Spatial Resolution

Several sites for photographers perform spatial resolution ‘sharpness’ testing of a specific lens and digital camera set up by capturing a target.  You can also measure your own equipment relatively easily to determine how sharp your hardware is.  However comparing results from site to site and to your own can be difficult and/or misleading, starting from the multiplicity of units used: cycles/pixel, line pairs/mm, line widths/picture height, line pairs/image height, cycles/picture height etc.

This post will address the units involved in spatial resolution measurement using as an example readings from the popular slanted edge method, although their applicability is generic.

Continue reading The Units of Spatial Resolution